NP-EI与MCH在中枢神经系统中广泛共定位,尤其是在LHA和ZI区域。
Myelin Oligodendrocyte Glycoprotein Peptide (35-55)(髓鞘少突胶质细胞糖蛋白肽 (35-55))是一种合成肽,广泛用于研究多发性硬化症(Multiple Sclerosis, MS)等中枢神经系统脱髓鞘疾病的免疫机制。这种肽段对应于小鼠和大鼠髓鞘少突胶质细胞糖蛋白(MOG)的第 35 至 55 位氨基酸,是 T 细胞识别的主要抗原表位之一。 MOG 与脱髓鞘疾病 髓鞘少突胶质细胞糖蛋白(MOG)是一种主要存在于中枢神经系统髓鞘表面的糖蛋白,对于维持髓鞘的完整性和功能至关重要。在多发性硬化症等脱髓鞘疾病中,免疫系统错误地攻击髓鞘,导致神经功能障碍。MOG 是这些疾病中的主要自身抗原之一,其免疫反应在疾病的发病机制中起着关键作用。 Myelin Oligodendrocyte Glycoprotein Peptide (35-55) 的研究价值 Myelin Oligodendrocyte Glycoprotein Peptide (35-55) 是研究 MOG 特异性免疫反应的重要工具。
PYY 及其受体成为了治疗肥胖症和相关代谢疾病的一个潜在靶点。
Autocamtide 2-amide 是一种合成肽段,最初被设计为钙调蛋白依赖性激酶(CaM Kinase II,CaMKII)的特异性底物。它在研究CaMKII的活性、功能以及其在细胞信号传导中的作用方面发挥着重要作用,是生物化学和细胞生物学研究中的重要工具。 CaMKII与Autocamtide 2-amide 钙调蛋白依赖性激酶II(CaMKII)是一种关键的信号转导蛋白,广泛存在于哺乳动物的细胞中,尤其是在神经元中。CaMKII在多种生理过程中发挥重要作用,包括学习、记忆、心脏功能调节以及细胞存活等。其活性的调节与多种疾病的发生发展密切相关,如心力衰竭、癫痫和神经退行性疾病。 Autocamtide 2-amide 是一种特异性设计的肽段,其序列与CaMKII的自身磷酸化位点高度相似。这种设计使得Autocamtide 2-amide能够被CaMKII高效磷酸化,从而用于检测和研究CaMKII的活性。磷酸化的Autocamtide 2-amide可以通过多种方法进行检测,如放射性同位素标记、荧光标记或质谱分析等。
WISP-1在癌症中的作用较为复杂,它既可以作为肿瘤抑制因子,也可以作为肿瘤促进因子。
HVEM(Herpes Virus Entry Mediator)是一种共刺激分子,属于肿瘤坏死因子受体超家族。它在免疫系统中发挥着重要的调节作用,参与T细胞的激活、细胞凋亡以及免疫细胞间的相互作用。HVEM-Fc是一种融合蛋白,由HVEM的胞外域与人IgG1的Fc段融合而成,广泛用于研究HVEM的功能和机制。 HVEM的功能与机制 HVEM的主要功能是调节免疫细胞的活化和相互作用。它能够与多种配体结合,包括LIGHT、Lymphotoxin-α(LT-α)和BTLA等。这些配体在免疫反应中发挥不同的作用,HVEM通过与它们结合,调节T细胞的激活、细胞凋亡和免疫细胞间的信号传导。 HVEM在免疫调节中的作用机制主要体现在以下几个方面: T细胞激活:HVEM与LIGHT结合,能够促进T细胞的激活和增殖。 细胞凋亡:HVEM与LT-α结合,能够诱导细胞凋亡,从而调节免疫反应的强度。 免疫细胞间的相互作用:HVEM与BTLA结合,能够调节免疫细胞间的信号传导,维持免疫系统的平衡。 HVEM-Fc的应用 HVEM-Fc作为一种融合蛋白,广泛用于研究HVEM的功能和机制。
SYBR Green I 10000×浓缩液应保存在-20℃避光环境中,避免反复冻融。
Bradykinin(缓激肽)是一种由九个氨基酸组成的生物活性肽,在人体的多种生理和病理过程中扮演着关键角色。它最初是从蛇毒中分离出来的,后来在哺乳动物体内也发现了其广泛的存在和作用。 血管调节功能 Bradykinin 最显著的生理功能之一是其对血管的调节作用。它通过激活血管内皮细胞上的 B2 受体,促进一氧化氮(NO)和前列环素(PGI2)的释放,这些物质能够有效舒张血管,降低血压。此外,Bradykinin 还能增加血管通透性,导致局部组织的充血和水肿,这在炎症反应中尤为重要。 炎症与疼痛反应 Bradykinin 在炎症反应中发挥着重要作用。它能够刺激肥大细胞和巨噬细胞释放组胺、细胞因子等炎症介质,从而加剧炎症反应。此外,Bradykinin 还能直接作用于神经末梢,引起疼痛感,这是其在炎症部位引起疼痛的关键机制之一。 医学应用与研究前景 Bradykinin 的研究不仅有助于理解炎症和血管调节的机制,还为开发新型药物提供了靶点。例如,针对缓激肽系统的药物已经被用于治疗高血压和心力衰竭。这些药物通过抑制缓激肽的降解或阻断其受体,发挥降压和改善心脏功能的作用。
在人类免疫系统的复杂网络中,Flt-3L(Fms样酪氨酸激酶3配体)扮演着一个至关重要的角色。
色素上皮衍生因子(PEDF,Pigment Epithelium-Derived Factor)是一种多功能糖蛋白,广泛存在于人体多种组织中,最初是在视网膜色素上皮细胞中被发现的。它在维持组织健康、促进细胞存活和调节代谢过程中发挥着重要作用。 PEDF的功能 PEDF具有多种生物学功能,其中最为人熟知的是其在眼部健康中的作用。它能够促进视网膜神经元的存活和功能维持,对视网膜血管的正常发育和稳定也至关重要。此外,PEDF还具有抗血管生成的特性,能够抑制异常血管的生长,这在预防视网膜病变和黄斑变性等眼部疾病中具有重要意义。 除了眼部健康,PEDF在神经系统中也扮演着重要角色。它能够促进神经元的分化和存活,增强突触可塑性,对神经系统的发育和功能维持起到保护作用。在心血管系统中,PEDF能够调节血管内皮细胞的功能,促进血管的正常发育和修复,有助于维持心血管健康。 临床应用与研究 近年来,PEDF在疾病治疗中的潜力逐渐受到关注。在眼部疾病治疗方面,PEDF的重组蛋白或其衍生物被研究用于治疗视网膜病变、黄斑变性和糖尿病视网膜病变等疾病。
dATPSolution(100 mM) 经严格检测,无DNase和RNase污染保证实验结果可靠
Betacellulin(BEC,人源贝塔细胞素)是表皮生长因子(EGF)家族的重要成员,广泛存在于人体多种细胞和组织中,如上皮细胞、成纤维细胞等。它通过与表皮生长因子受体(EGFR)结合,激活下游信号通路,调节细胞的生长、分化、存活和迁移。 在细胞生长和分化方面,Betacellulin发挥着关键作用。它能够促进多种细胞类型的增殖,特别是在上皮细胞和内皮细胞中。例如,在皮肤和黏膜的修复过程中,Betacellulin能够刺激上皮细胞的增殖和迁移,加速伤口愈合。此外,它在胚胎发育过程中也起着重要作用,参与器官形成和组织分化。 Betacellulin在维持组织稳态方面同样不可或缺。它能够调节细胞外基质的合成和降解,保持组织的完整性和功能。在一些慢性疾病中,如慢性伤口和炎症性疾病,Betacellulin的表达异常可能导致组织修复障碍。 在肿瘤学领域,Betacellulin的研究也备受关注。一些研究表明,Betacellulin在某些肿瘤细胞中的表达增加,可能促进肿瘤的生长和侵袭。例如,在某些类型的肺癌和结直肠癌中,Betacellulin的高表达与肿瘤的恶性程度和预后不良相关。
上海保藏生物技术中心是一家有着先进的发展理念,先进的管理经验,在发展过程中不断完善自己,要求自己,不断创新,时刻准备着迎接更多挑战的活力公司,在上海市等地区的化工中汇聚了大量的人脉以及客户资源,在业界也收获了很多良好的评价,这些都源自于自身的努力和大家共同进步的结果,这些评价对我们而言是**好的前进动力,也促使我们在以后的道路上保持奋发图强、一往无前的进取创新精神,努力把公司发展战略推向一个新高度,在全体员工共同努力之下,全力拼搏将共同上海保藏生物技供应和您一起携手走向更好的未来,创造更有价值的产品,我们将以更好的状态,更认真的态度,更饱满的精力去创造,去拼搏,去努力,让我们一起更好更快的成长!