Melittin 可以通过调节细胞内的信号通路,激活凋亡相关蛋白,从而诱导癌细胞凋亡。
重组食蟹猴IGFBP2蛋白(His Tag)是一种重要的细胞因子,属于胰岛素样生长因子结合蛋白(IGFBP)家族。IGFBP2(胰岛素样生长因子结合蛋白2)在调节胰岛素样生长因子(IGF)的生物活性中发挥关键作用,广泛参与细胞生长、分化、存活和代谢调节等生物学过程。因此,重组食蟹猴IGFBP2蛋白的开发为相关研究提供了重要的工具。 IGFBP2主要在肝脏、肾脏和脑等组织中表达,通过与IGF-1和IGF-2结合,调节它们的生物活性。IGFBP2不仅可以延长IGF的半衰期,还可以通过与细胞表面的受体结合,调节IGF的局部浓度和作用,从而影响细胞的生长和代谢。在生理条件下,IGFBP2有助于维持细胞的正常生长和代谢平衡。在病理条件下,IGFBP2的异常表达与多种疾病的发生发展密切相关,包括癌症、心血管疾病和神经退行性疾病。 重组食蟹猴IGFBP2蛋白的制备,利用了重组蛋白技术和His Tag的纯化优势,使得该蛋白的生产更加高效和稳定。His Tag的添加便于通过金属离子亲和层析等方法进行纯化,提高了蛋白的纯度和产量,为大规模的实验研究提供了可能。
在儿童的生长发育过程中,IGF-BP-3 与 IGF-1 的协同作用对于骨骼和软组织的正常生长至关重
在分子生物学和生物技术领域,末端脱氧核糖核酸转移酶(Terminal Deoxynucleotidyl Transferase,TdT)是一种极为重要的工具酶,以其独特的功能在DNA末端修饰和标记中发挥着关键作用。特别是高浓度的TdT(20U/μl),因其高效的活性和精准的修饰能力,成为实验室中不可或缺的“精准工匠”。 高浓度TdT的特性 末端脱氧核糖核酸转移酶(TdT)是一种依赖于DNA末端的酶,能够将脱氧核苷酸(dNTPs)添加到DNA链的3'末端。与大多数DNA聚合酶不同,TdT不需要模板来指导核苷酸的添加,这使得它能够在DNA末端添加任意序列的核苷酸。高浓度的TdT(20U/μl)具有更高的活性,能够在较短的时间内完成高效的末端修饰。 广泛的应用 高浓度TdT在分子生物学研究中具有广泛的应用。例如,在DNA末端标记中,TdT被用于添加放射性或荧光标记的核苷酸,从而生成用于杂交实验的标记探针。在DNA测序中,TdT可以用于添加特定的核苷酸序列,帮助确定DNA的末端结构。此外,TdT还被用于DNA片段的连接和修复,通过在DNA末端添加特定的核苷酸序列,促进DNA片段之间的连接。
上样与电泳:混合均匀后,将样品加入琼脂糖凝胶的加样孔中,进行电泳。
在分子生物学实验中,DNA凝胶电泳是一种常用的技术,用于分离和分析DNA片段。而6×DNA Loading Buffer则是这一实验中不可或缺的重要试剂。 6×DNA Loading Buffer是一种六倍浓缩的上样缓冲液,主要用于DNA凝胶电泳。它含有甘油、EDTA、溴酚蓝和二甲苯青FF等成分。其中,甘油可以增加样品的密度,使样品沉入凝胶加样孔中,防止样品漂浮;EDTA则用于螯合金属离子,防止DNA降解。溴酚蓝和二甲苯青FF作为指示剂,分别指示电泳的进程,帮助实验者判断电泳是否达到最佳分离效果。 使用6×DNA Loading Buffer时,通常按照1:5(Loading Buffer:DNA样品)的比例混合。例如,对于5μL的DNA样品,加入1μL的6×Loading Buffer,混匀后即可加样。这种缓冲液适用于多种浓度的琼脂糖凝胶,溴酚蓝在0.6%、1%、1.4%和2%琼脂糖凝胶中的迁移率分别与1Kb、0.6Kb、0.2Kb和0.15Kb的双链线性DNA片段大致相同。
对 Tuftsin 的研究不断深入。科学家们通过分子生物学和免疫学方法,进一步揭示了其作用机制。
重组大鼠白细胞介素-3β(Recombinant Rat IL-3β)是一种重要的细胞因子,属于白细胞介素家族。它在造血和免疫调节中发挥着关键作用,广泛应用于血液学和免疫学研究。 结构与特性 重组大鼠IL-3β是一种非糖基化的单链多肽,含有133个氨基酸,分子量约为15.5 kDa。它由大肠杆菌表达,纯度高于98%,内毒素水平低于1 EU/μg。这种蛋白的物理外观为无菌过滤的白色冻干粉末。 生物活性与功能 重组大鼠IL-3β具有显著的生物活性,能够促进多种造血细胞的增殖和分化。它主要作用于骨髓中的早期造血祖细胞,促进这些细胞的增殖和存活。IL-3β通过与细胞表面的IL-3受体结合,激活下游信号通路,如JAK-STAT通路,从而促进细胞的增殖和分化。此外,IL-3β还能够调节免疫反应,增强机体的免疫功能。 应用与研究 重组大鼠IL-3β广泛应用于细胞培养、造血研究和免疫调节实验。它可以用于研究造血机制、评估药物对造血细胞的影响,以及探索与血液疾病相关的疾病模型。例如,在研究急性髓系白血病(AML)时,IL-3β被证明能够促进白血病细胞的分化和凋亡。
它不仅在基础研究中发挥重要作用,还在生物技术应用中展现出巨大的潜力。
Recombinant Rhesus TARC(重组恒河猴胸腺激活调节趋化因子)是一种重要的趋化因子,属于 CC 趋化因子家族。TARC 主要通过调节免疫细胞的迁移和活化,在免疫反应和炎症过程中发挥关键作用。 生物学功能 TARC 主要由单核细胞、巨噬细胞和树突状细胞等免疫细胞分泌。它通过与其受体 CCR4 结合,特异性地吸引 Th2 细胞和调节性 T 细胞(Tregs)向炎症部位聚集。TARC 在调节免疫细胞的迁移和功能方面具有重要作用,特别是在过敏反应和自身免疫性疾病中。例如,在过敏性鼻炎和哮喘中,TARC 的表达显著增加,促进 Th2 细胞的聚集,加剧过敏症状。 免疫调节与炎症反应 TARC 在多种炎症性疾病和自身免疫性疾病中发挥重要作用。它通过吸引 Th2 细胞和 Tregs,调节免疫反应的平衡。在过敏性疾病中,TARC 的高水平表达与 Th2 细胞的活化和 IgE 的产生密切相关。此外,TARC 还参与调节 Tregs 的功能,影响免疫耐受的建立和维持。在某些自身免疫性疾病中,TARC 的表达失调可能导致免疫反应的过度激活,加剧疾病进程。
在诊断领域,重组人GPC3蛋白也为癌症的早期检测提供了新的思路。
在分子生物学的研究中,核糖核酸酶T1(RNase T1)以其独特的酶解特性和在RNA序列分析中的重要作用,成为科学家们手中不可或缺的“利器”。 核糖核酸酶T1是一种能够特异性切割RNA的酶,它主要作用于鸟嘌呤(G)残基的3'端,将RNA分子切割成含有鸟嘌呤的单核苷酸和寡核苷酸片段。这种酶的特异性切割能力使其在RNA序列分析中具有极高的应用价值。通过RNase T1对RNA进行部分水解,科学家们可以获得一系列特定的RNA片段,这些片段可以进一步用于确定RNA的序列结构和功能特性。 在实际应用中,RNase T1被广泛用于研究RNA的二级结构和三级结构。例如,在分析tRNA和rRNA的结构时,RNase T1可以用来切割特定的G残基,从而揭示RNA分子的折叠模式和功能区域。此外,RNase T1还被用于研究RNA与蛋白质的相互作用,通过切割RNA分子,科学家们可以了解蛋白质结合位点的具体位置和作用机制。 RNase T1的酶解特性还使其在RNA降解和修饰研究中发挥重要作用。
上海保藏生物技术中心是一家有着先进的发展理念,先进的管理经验,在发展过程中不断完善自己,要求自己,不断创新,时刻准备着迎接更多挑战的活力公司,在上海市等地区的化工中汇聚了大量的人脉以及客户资源,在业界也收获了很多良好的评价,这些都源自于自身的努力和大家共同进步的结果,这些评价对我们而言是**好的前进动力,也促使我们在以后的道路上保持奋发图强、一往无前的进取创新精神,努力把公司发展战略推向一个新高度,在全体员工共同努力之下,全力拼搏将共同上海保藏生物技供应和您一起携手走向更好的未来,创造更有价值的产品,我们将以更好的状态,更认真的态度,更饱满的精力去创造,去拼搏,去努力,让我们一起更好更快的成长!